COMPLIANCE IS MANDATORY

John C. Stennis Space Center (SSC)
Software Assurance Procedural Requirements
Document History Log

<table>
<thead>
<tr>
<th>Status/Change/Revision</th>
<th>Change Date</th>
<th>Originator/Phone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>11/02/2007</td>
<td>Charles Fallo/8-2553</td>
<td>Initial Release</td>
</tr>
<tr>
<td>Rev A</td>
<td>06/09/10</td>
<td>Charles Fallo/8-2553</td>
<td>Updated Center Director signature block. Added section 2.9.h</td>
</tr>
<tr>
<td>Rev B</td>
<td>12/27/2011</td>
<td>Rae Lyn Anderson/8-1945</td>
<td>Updated sections P.1-P.4, 1.1 and all subsections, 1.2 and all subsections, 2.1-2.7, 2.9, 2.11, 2.13 and 2.15. Added sections 2.8, 2.10, 2.12, 2.14. Removed section 1.2.6 Contractor SMA. Changes made to address audit findings.</td>
</tr>
<tr>
<td>Rev C</td>
<td>06/15/2015</td>
<td>Neil Toupin/8-1109</td>
<td>Updated sections P.1-P.2, P.4-P.6, 1.1, 1.2, 1.2.1-1.2.3, 1.2.5-1.2.8, 2.1-2.15, and Appendix A. Added sections 1.2.9-1.2.11. Changes made to address revision of the NASA Software Safety Standard (NASA-STD-8719.13C)</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

PREFACE .. 5

P.1 PURPOSE .. 5

P.2 APPLICABILITY AND SCOPE .. 5

P.3 AUTHORITY .. 7

P.4 APPLICABLE DOCUMENTS ... 7

P.5 MEASUREMENT AND VERIFICATION ... 7

P.6 CANCELLATION ... 8

CHAPTER 1 ORGANIZATION ... 8

1.1 Organizational Structure ... 8

1.2 Roles and Responsibilities ... 9

1.2.1 Project Management .. 9

1.2.2 SMA Director .. 10

1.2.3 Software Assurance Manager ... 10

1.2.4 Project SMA Representatives .. 10

1.2.5 System Hazard Engineer/System Safety Engineer 10

1.2.6 Software Acquirer ... 11

1.2.7 Software Provider .. 11

1.2.8 SSC Independent Verification and Validation (IV&V) Liaison 11

1.2.9 Software Release .. 12

1.2.10 Section 508 Compliance ... 12

1.2.11 Export Control ... 12

CHAPTER 2 SOFTWARE ASSURANCE PROCESS ... 12

2.1 Definition .. 12

2.2 Implementation ... 12

2.3 NASA SSC Software Life Cycle Management Requirements 13

2.4 Software Assurance Acquirer and Provider .. 13

2.5 Functional SA Role Assignment and Resources 13

2.6 Software Assurance Classification Assessment .. 14

2.7 Software Safety Criticality ... 14

2.8 Software Quality Assurance .. 15

2.9 Software Reliability .. 15

2.10 Software Assurance Plan .. 16

2.11 Software Assurance Metrics .. 16

2.12 Software Assurance Task Review Process .. 17

2.13 Software Assurance Task-Developed Products/Documents 17

2.14 Tailoring, Deviations, and Waivers ... 17

2.15 Training ... 18

APPENDIX A – ABBREVIATIONS AND ACRONYMS 19
FIGURES

Figure 1 Organizational Chart for Management of Software Assurance Reporting Activities ...8

Figure 2 Governing Lines of Authority for Resolving NASA SSC SA Issues ...9
PREFACE

The Software Assurance (SA) procedural requirements cover the entire software life cycle for both the acquirer and provider ultimately to provide safe, quality and cost effective software products and systems.

P.1 PURPOSE

a. This Stennis Procedural Requirement (SPR) specifies SA requirements for National Aeronautics and Space Administration (NASA) Stennis Space Center (SSC) projects, programs, facilities and activities. NASA SSC is a unique facility consisting of several full scale rocket engine/motor test facilities, component and small engine test facilities to support engine test programs such as the NASA lead, commercial focused, private venture and engine testing for NASA's next generation of rockets for Lunar and Mars exploration. The primary purpose of this SPR is to support the office responsible for overseeing the safe operation of these unique national test facilities.

b. This SPR establishes the procedures necessary to comply with the SA requirements for software developed and/or acquired by NASA SSC, including open source, reuse, Government off-the-Shelf (GOTS) software, Modified off-the-Shelf (MOTS) software and Commercial off-the-Shelf (COTS) software, when included in a NASA system. It is intended to provide a common SA framework across the Center and establishes consistency from project to project and test facility to test facility. It also describes procedures and processes for analyzing and applying the appropriate software assurance techniques and methods to software throughout its life cycle. The primary audience for this SPR is Project Managers, Project Safety and Mission Assurance Directorate (SMA) Representatives, SA Managers and Engineers, and Software Engineers.

P.2 APPLICABILITY AND SCOPE

a. This SPR supports the implementation of NASA Policy for software as defined in NASA Policy Directive (NPD) 7120.4, NASA Engineering and Program/Project Management Policy. NPD 7120.4 is an overarching document that establishes policies for all software created, acquired and maintained by or for NASA. The NASA SSC SMA Director is the Technical Authority (TA) for this SPR in accordance with SPLN-1200-0003, SSC SMA Technical Authority Implementation Plan and ensures compliance with NASA SMA related policies.

b. This SPR is applicable to all NASA SSC personnel, NASA SSC contractors and all tiers of subcontractors. It is applicable to all software and firmware including open source, reuse, GOTS, MOTS and COTS when included in a NASA SSC system. Applicable NASA SSC systems include, but are not necessarily limited to, facilities and projects including the Test Complex Facility, Hazardous Gas Detection & Warning System, High Pressure Gas Facility, High Pressure Industrial Water Plant, Applied Science Projects, Modeling and Analysis
Software, Test Complex Management Systems, Design and Data Management System (DDMS), and Master Work Control, test beds, ground support systems, other facility systems and software projects that support or perform NASA specific missions.

c. The SA requirements in this SPR flow down from NPD 7120.4 through NASA Procedural Requirements (NPRs) and NASA Standards (STDs):
 - NPR 7150.2, *NASA Software Engineering Requirements*, which establishes a set of software engineering requirements to be applied throughout NASA;
 - NPR 2210.1, *Release of NASA Software*, which establishes responsibilities and procedures for the reporting, review, assessment, and release of software created by NASA;
 - NASA-STD-8739.8, *Software Assurance Standard*, which describes the processes and procedures for analyzing and applying appropriate software assurance techniques and methods to software;
 - NASA-STD-8719.13, *NASA Software Safety Standard*, which describes the activities necessary to ensure safety is designed into the software that is acquired or developed by NASA.

d. The focus of this SPR are SA classifications A-H as applicable. SA classifications as provided in NPR 7150.2 are:
 - Class A - Human Rated Space Software Systems
 - Class B - Non-Human Space Rated Software Systems or Large Scale Aeronautics Vehicles
 - Class C - Mission Support Software or Aeronautic Vehicles, or Major Engineering/Research Facility Software
 - Class D - Basic Science/Engineering Design and Research and Technology Software
 - Class E - Design Concept and Research and Technology Software
 - Class F - General Purpose Computing, Business and IT Software (Multi-Center or Multi-Program/Project)
 - Class G - General Purpose Computing, Business and IT Software (Single-Center or Project)
 - Class H - General Purpose Desktop Software

According to NASA-STD-8739.8, *Software Assurance Standard* requirements for Classes F, G, and H are designated by the Chief Information Officer (CIO). As such, SA is only performed on these classes upon request or as designated by the CIO.

e. SA consists of five (5) software assurance disciplines; Quality, Safety, Reliability, Verification and Validation (V&V) and Independent Verification and Validation (IV&V) as defined in NASA-STD-8739.8. The results of the SA Classification Assessment for each project will assist in determining the scope of the SA effort including the level of effort for each discipline.
f. In the event of a conflict between a NPD, NPR, or a STD with this SPR, the information provided in the NPD, NPR, or STD takes precedence.

P.3 AUTHORITY

NPD 7120.4, NASA Engineering and Program/Project Management Policy

P.4 APPLICABLE DOCUMENTS

All references are assumed to be the latest version unless otherwise specified.

b. NASA-STD-8739.8, Software Assurance Standard
c. NPD 7120.4, NASA Engineering and Program/Project Management Policy
d. NPR 1441.1, NASA Records Retention Schedules
e. NPR 2190.1, NASA Export Control Program
f. NPR 2210.1, Release of NASA Software
g. NPR 2800.2, Electronic and Information Technology Accessibility
h. NPR 7120.5, NASA Space Flight Program and Project Management Requirements
i. NPR 7150.2, NASA Software Engineering Requirements
j. NPR 8715.3, NASA General Safety Program Requirements
k. SBCC-1150-0013, Risk Review Panel (RRP) Charter
l. SCWI-3410-0002, Training and Development Plan
m. SCWI-8710-0001, System Safety and Health
n. SCWI-8710-0004, SSC Internal Audit Process
o. SOI-8080-0008, Documentation and Configuration Control of Test Complex Software
p. SOI-8080-0052, Software Life Cycle and Development Process
q. SPLN-1200-0003, SSC SMA Technical Authority Implementation Plan
r. SPLN-3410-0004, Personnel Training Plan for Safety and Mission Assurance
s. SPLN-7120-0004, Project Directorate Risk Management Implementation Plan
t. SPR 1440.1, Records Management Program Requirements
u. SSP-8715-0001, SSC Safety and Health Handbook
v. SSTD-8070-0007-CONFIG, Variance and Alternate Standard Requests

P.5 MEASUREMENT AND VERIFICATION

Compliance with this procedure will be monitored through the SSC Management System (SMS) and the SMA by objective evidence, such as training records, functional SMA organization chart, SA role assignment provided, Annual Operating Agreement (AOA), SMA Work Instructions generated and SA task developed products (reference Section 2.13).
P.6 CANCELLATION

Richard J. Gilbrech, Ph.D.
Director

DISTRIBUTION

Approved for public release via the NASA Online Directives Information System (NODIS) and TechDoc; distribution is unlimited.

CHAPTER 1 ORGANIZATION

1.1 Organizational Structure

Successful compliance and management of all NASA SSC SA activities requires the involvement of various groups at many levels of the project and NASA SSC organization. Figure 1 shows the NASA SSC management and personnel responsible for assuring SA reporting activities are implemented to comply with the SA and Software Safety (SS) standards.

Figure 1 Organizational Chart for Management of Software Assurance Reporting Activities
Figure 2 depicts the “directional steps” for the governing lines of authority for resolving SSC SA issues. This is to assure all unresolved SA issues are elevated to the appropriate governing authority in compliance with NPR 7150.2.

![Diagram of lines of authority](image)

Figure 2 Governing Lines of Authority for Resolving NASA SSC SA Issues

1.2 Roles and Responsibilities

This section of the SPR identifies and describes the SA roles and responsibilities of the various NASA SSC personnel. For clarification, the terms *assuring* and *ensuring* have the following usage:

- Assuring is used when SA practitioners make certain the specified SA activities have been performed by others.
- Ensuring is used when SA practitioners themselves perform the specified SA activities.

1.2.1 Project Management

a. Project Management is responsible for making sure the appropriate criteria are in place to assure compliance with NPD 7120.4, NPR 7150.2, NPR 2210.1 and this SPR. Additionally, Project Management is responsible for ensuring the Project SMA Representatives perform SA functions with support from the software developing organization(s) according to this SPR throughout the project life cycle relative to the software classification level. Project Management assures and enables (through appropriate project authority and funding) SA cohesiveness of and compliance with SSC processes (e.g., SBCC-1150-0013, Risk Review Panel (RRP) Charter, SPLN-7120-0004, Project Directorate Risk Management Implementation Plan, SOI-8080-0008, Documentation and Configuration Control of Test Complex Software, and SOI-8080-0052, Software Life Cycle and Development Process).
b. Project Management shall appropriately fund the effort to develop the Preliminary Hazard Analysis (PHA), Hazard Analysis (HA), and/or System Hazard Analysis (SHA) as defined in SCWI-8710-0001, including the funding of Software Engineering personnel to provide expertise to the System Hazard Engineer/System Safety Engineer during the development of these artifacts.

1.2.2 SMA Director

The SMA Director is responsible for ensuring compliance with NPD 7120.4, NPR 7150.2, NPR 2210.1, and this SPR, at NASA SSC for all software related projects. The SMA Director is responsible for ensuring the SA project staff, including both the acquirer and provider, are performing the tasks according to NASA-STD-8739.8, NASA-STD-8719.13, the SA plan and the contract. Additionally, the SMA Director will identify trained SA Managers and provide the appropriate resources to ensure project compliance with NASA SA Policy.

1.2.3 Software Assurance Manager

a. The SA Manager is responsible for ensuring the appropriate SA requirements are specified in the project requirements documentation with the objective of ensuring SA compliance throughout the project life cycle. Additionally the SA Manager shall ensure the software acquirer and provider understand the SA requirements. The SA Manager’s key tasks are:
 - Executing, directing and managing the SA procedural requirements according to the Software Assurance Plan (SAP) or Software Safety and Assurance Plan (SSAP).
 - Conducting and documenting periodic reviews, audits and assessments throughout the project’s life cycle.

b. Additionally, the SA Manager will ensure the SA Classification is identified and the appropriate level of SA effort is applied. Tailoring the implementation of the SA effort for a specific project is dependent upon the software’s SA Classification(s).

1.2.4 Project SMA Representatives

The Project SMA Representatives are responsible for performing SA and SS functions on their assigned projects throughout the project life cycles. These functions are accomplished through inspections, witnessing of activities, conducting surveillance, and verification of artifacts and processes. Additionally, a key role for the Project SMA Representative is to coordinate with the respective project’s team to ensure all software assurance and software safety (safety, quality, reliability, verification and validation) requirements and procedures are being satisfied.

1.2.5 System Hazard Engineer/System Safety Engineer

The System Hazard Engineer/System Safety Engineer is responsible for performing Preliminary Hazard Analysis (PHA), Hazard Analysis (HA), and System Hazard Analysis (SHA) according
to NPR 8715.3, *NASA General Safety Program Requirements*, SSP-8715-0001, *SSC Safety and Health Handbook*, and SCWI-8710-0001, *System Safety and Health*, for identifying the hazards within a system, including software, and for determining the software’s safety-criticality. A key role, throughout the project life cycle, is to coordinate with other project safety and software engineers and project management to identify system hazards and determine the software’s contribution to safety, controls, design features, verifications and requirements needed to assure safer software operation within the system.

1.2.6 Software Acquirer

a. The Software Acquirer (or customer) is the entity or individual who specifies the requirements for the software and accepts the resulting software products. These are generally NASA SSC Civil Servants or Prime Contractor personnel.

b. The Software Acquirer is responsible for addressing requirements as specified in NASA-STD-8739.8 and NASA-STD-8719.13, or to the extent specified in the contract or other agreement such as a Memorandum of Agreement/Understanding. Specifically, the Software Acquirer is responsible for specifying the SA requirements for the entire life cycle of the product.

c. The Software Acquirer shall contribute to the development of the PHA, HA, and/or SHA as defined in SCWI-8710-0001, by providing technical expertise to the System Hazard Engineer/System Safety Engineer during the development of these artifacts.

1.2.7 Software Provider

a. The Software Provider (or supplier) refers to the entities or individuals that design, develop, implement, test, operate and maintain the software products.

b. The Software Provider is responsible for addressing requirements as specified in NASA-STD-8739.8 and NASA-STD-8719.13, or to the extent specified in the contract or other agreement such as a Memorandum of Agreement/Understanding.

d. The Software Provider shall contribute to the development of the PHA, HA, and/or SHA as defined in SCWI-8710-0001, by providing technical expertise to the System Hazard Engineer/System Safety Engineer during the development of these artifacts.

1.2.8 SSC Independent Verification and Validation (IV&V) Liaison

In the event a project warrants IV&V support, a Liaison to the IV&V facility from the SMA organization will be assigned. The IV&V Liaison serves as the project Point of Contact (POC).
to support and coordinate the planning, execution, and scoping of the IV&V effort. The specific software components, exchange of information/data and tasks to be performed will be documented in an IV&V Project Execution Plan (IPEP). The key role for the SMA IV&V Liaison will be facilitating the communication and exchange of information and data between the project and the IV&V project representatives.

1.2.9 Software Release

Software assurance personnel are responsible for supporting the process for releasing software outside of SSC. Software assurance personnel shall ensure the software proposed for release meets all applicable Center and Agency requirements and standards for software development and assurance. Software assurance personnel are responsible for providing a concurrence for the assigned software release category.

1.2.10 Section 508 Compliance

Per NPR 2800.2, the Office of the Chief Information Officer (OCIO) will ensure software compliance with Section 508 of the Rehabilitation Act of 1973, as implemented via 36 CFR 1194.

1.2.11 Export Control

Per NPR 2190.1, the Center Export Administrator will ensure software compliance with United States export control laws and regulations.

CHAPTER 2 SOFTWARE ASSURANCE PROCESS

2.1 Definition

NASA SSC is a unique facility consisting of several one-of-a-kind rocket engine/motor test facilities that are national assets. The NASA SSC SA process is a planned and systematic set of activities to ensure the conformance of SA life cycle processes and products. SA assures the software and its related products meet their specified requirements, conform to standards and regulations, are consistent, complete, correct, safe, secure and reliable as warranted for the system and operating environment and satisfy customer needs.

2.2 Implementation

a. This SPR shall apply to and be referenced in new contracts and subcontracts which develop software for NASA SSC systems.
b. The procuring NASA SSC Directorate shall comply with this SPR and work with the SSC SMA Director and SSC SA Manager to make a conscious, documented decision as to how best to apply these requirements to current contracts and ongoing projects.

2.3 NASA SSC Software Life Cycle Management Requirements

a. NASA SSC personnel shall conform to the applicable sections of software life cycle management requirements in NPR 7120.5, NASA Space Flight Program and Project Management Requirements. Life cycle phases determine which activities will be performed. The NASA SA Standard requirements shall be incorporated to assure adherence to each of the software assurance disciplines throughout the project life cycle.

b. The Program/Project SAP shall define the following key software assurance disciplines as described in NASA-STD-8739.8:
 - Software Quality (Assurance, Control and Engineering)
 - Software Safety
 - Software Reliability
 - Software V&V
 - Software IV&V

c. The NASA SSC SA requirements shall be assured for the duration of the software’s life cycle which includes acquisition, development, acceptance, operation, maintenance and retirement for the Software Classification and Software Safety Criticality. The NASA-STD-8739.8 Requirements Compliance Matrix shall be used as a SA requirements life cycle compliance checklist.

d. Management of NASA SSC SA activities shall be implemented as part of the project formulation stage.

2.4 Software Assurance Acquirer and Provider

a. The SA Acquirer and Provider participate and work together towards the success of the project. The Acquirer defines and ensures execution of the SA requirements and the Provider is ultimately responsible for the development of the software products and adherence to the project’s software and SA requirements. The majority of the time, from a project perspective, the NASA SSC SMA, SA and Project organizations fulfill the Acquirer role.

b. The Acquirer and Provider roles, as described in Section 1.2 and defined in NASA-STD-8739.8, shall be used as guidance to tailor the project requirements, contract and the SAP to assure SA compliance.

2.5 Functional SA Role Assignment and Resources
a. Prior to performing any SA Process activities, the SMA Director shall assure all functional SA roles are assigned and resources provided as described in Section 1.2 above.

b. Functional SA roles shall include the respective Project SMA Representatives, the SA Manager, and the System Hazard Engineer/System Safety Engineer.

2.6 Software Assurance Classification Assessment

a. The SA Manager and the Project SMA Representatives shall perform and participate in a Software Assurance Classification Assessment of the project software and software components. The Software Classification Assessment shall be performed in accordance with NASA-STD-8739.8 and SOI-8080-0052.

b. The NASA SSC Software Assurance Classification Report (SACR) (SSC Form SSC-809) shall be placed under configuration control by the appropriate authorizing board as defined in center policies.

c. The SA Classification Report shall be used to prioritize SA level of effort for NASA SSC software.

2.7 Software Safety Criticality

a. Safety Critical Systems, as defined in NPR 8715.3, which include software must be evaluated for the software’s contribution to system safety early in the acquisition or planning phase. Unless the evaluation proves the software is NOT involved in system safety of the project, the software shall be assumed to be safety-critical; therefore, NASA-STD-8719.13 and NPR 7150.2 SWE-134 shall be followed. NASA-STD-8719.13 requirements must be met, but the implementation and approach may vary dependent upon the risk posed by the safety critical software on the safety functions of the system. The NASA-STD-8719.13 Software Safety Requirements Compliance Matrix shall be used as a checklist to ensure requirements coverage.

b. The project System Hazard Engineer/System Safety Engineer shall conduct a PHA, HA, and/or SHA per NPR 8715.3, SSP-8715-0001, and NASA-STD-8719.13 and develop a report(s). The PHA or root cause analysis tool is used to determine if the software is safety critical. The HA or SHA is used to establish the Risk Assessment Code (RAC).

c. The SA Manager and Project SMA Representative shall participate in the review of the system software PHA/HA report(s).

d. The project shall fund the Software Engineer’s (both Acquirer and Provider) time to participate in the development of the PHA, HA, and/or SHA and review of the system software PHA/HA report(s).
e. Software shall be analyzed by the System Hazard Engineer/System Safety Engineer and SA Manager to determine if software has a potential for causing a hazard, and/or is part of a system that controls, monitors or mitigates a hazard.

f. During the operational phase, all system discrepancies and configuration changes shall be reviewed and analyzed for system safety impacts by the SA Manager and Project SMA Representatives. If adverse system safety effects are expected and/or exist, the HA shall be updated.

2.8 Software Quality Assurance

a. The SA Manager and Project SMA Representatives shall ensure quality is built into the software products by reviewing, evaluating and supporting the development of project software related products and processes (i.e., plans, procedures, requirements, design documents, verification documents, reports, metrics, schedules and records) for SA compliance.

b. The SA Manager and/or Project SMA Representatives shall investigate, audit, review and/or evaluate the execution of project software life cycle processes for SA compliance and adherence to the Project SA plan. The results and/or findings for each event shall be documented in a report(s) and maintained in the project records or as defined in Center processes.

c. The SA Manager shall participate, conduct and attend formal reviews, audits and inspections and conduct informal project meetings to assure software quality issues are addressed. The results and/or findings for each event shall be documented in a report(s) and maintained in the project records.

2.9 Software Reliability

a. The SA Manager and Project SMA Representatives shall assure the system reliability analyses accurately account for software contributions to nominal and off-nominal operations of system critical functions, and that these contributions are formally flowed down as requirements.

b. The SA Manager and Project SMA Representatives shall support the development and review of project software related documents (i.e., plans, procedures, requirements, design documents, verification documents, reports, schedules and records) to assure reliability has been specified, properly implemented and verified by testing (i.e., fault detection, isolation, tolerance and recovery).

c. The SA Manager and Project SMA Representatives shall identify and analyze defect-related data to support reliability analysis, trends and metrics products. This data shall be documented to support software quality metrics and trend analysis as defined in the SAP.
2.10 Software Assurance Plan

a. Each program or project consisting of Class A-D software shall develop a SAP conforming to NASA-STD-8739.8, and document all the required software development and maintenance activities.

b. Each program or project consisting of safety-critical software shall develop a Software Safety Plan (SSP) conforming to NASA-STD-8719.13, and document all the required software development and maintenance activities for safety-critical software. This plan may be combined with the SAP for the same program or project to improve efficiency. The combined document shall be known as a Software Safety and Assurance Plan.

c. The NASA-STD-8739.8 Appendix B, Software Assurance Plan Template or SSC SSAP Template stored in DDMS shall be used as an outline for the SAP development. For smaller projects, this may be incorporated in another project planning document or in the Project Quality Assurance Plan.

d. The SAP shall be developed during the project planning phase by the SA Manager and/or Project SMA Representatives and formally staffed and approved by the project representatives identified in the NASA SSC SSAP Template.

e. Each Program/Project shall follow their respective SAP.

f. The provider's/supplier's software assurance plan may be used in lieu of the acquirer SSAP provided the plan is reviewed and approved by NASA SMA as equivalent to or more stringent than the requirements of NASA SSC's Test Complex SSAP.

g. The SAP shall detail the organizational structure and SA activities required to accomplish software assurance and as defined in NASA-STD-8739.8 Appendix B, Software Assurance Plan Template.

h. The SAP shall describe a software metrics collection and reporting process that complies with NASA-STD-8739.8 and NASA-STD-8719.13.

2.11 Software Assurance Metrics

a. The SA Manager and Project SMA Representatives will coordinate with the program or project team to assure the collection, analysis and documentation of metrics data.
b. The project-specific SA metrics shall be defined in the project SAP. These metrics shall be tracked, updated and reviewed on a periodic basis (i.e., bi-weekly, monthly, bi-monthly) as defined in the SAP. Additionally, at a minimum, the metrics shall be presented and discussed at the appropriate management reviews as defined in the program/project SAP.

c. The results shall be recorded and maintained as defined in the SAP.

2.12 Software Assurance Task Review Process

Throughout the program or project life cycle, which includes the acquisition, development, acceptance, operation, maintenance and retirement phases, the SA task activities shall be monitored by the SA Manager, and/or the Project SMA Representatives to ensure SA practices remain in place and are being followed accordingly.

2.13 Software Assurance Task-Developed Products/Documents

a. The products and records developed by the SA activities shall, at a minimum, include the following:
 - NASA SSC SACR
 - Specific Project SA PHA, HA, and SHA Reports as applicable
 - Specific Program, Project or Facility SAP
 - Software Assurance Checklists
 - Process/Product Audit Reports
 - SA Status Reports
 - Deviations or Waivers as applicable
 - Metrics (and Metrics reports)

b. Records shall be maintained in accordance with NPR 1441.1, NASA Records Management Program Requirements, and SPR 1440.1, SSC Records Management Program Requirements.

2.14 Tailoring, Deviations, and Waivers

a. Implementation of the NASA SSC SA requirements may be tailored based on the NASA SSC SACR, SSC Form SSC-809, as well as size, complexity, criticality and risk as defined in the project’s Software Management Plan (SMP) and/or SAP. The tailoring shall be performed in accordance with NASA-STD-8739.8 and NPR 7150.2. NASA-STD-8739.8 shall be used to determine and prioritize the SA effort.

b. SSC SA waivers and/or variances shall be documented on the SSC Form SSC-517 and processed in accordance with NPR 8715.3, NASA-STD-8739.8 and the governing Technical Authority per Variance and Alternate Standard Requests, SSTD-8070-0007-CONFIG. Instructions for completing Form SSC-517 are documented in SSTD-8070-0007-CONFIG.
2.15 Training

a. All personnel who manage, develop, implement and/or perform SA activities shall be trained and possess the proper skills for the SA endeavors. Refer to SPLN-3410-0004, Personnel Training Plan for Safety and Mission Assurance, and SCWI-3410-0002, Training and Development Plan. SA personnel performing audits shall complete the Team Auditor training courses defined in SCWI-8710-0004.

b. Types of training include, but are not limited to, items shown below:
 - Software Assurance
 - Software Safety
 - Software System Safety
 - Software Reliability
 - Software Engineering Design Methods and Languages
 - Software Processes
 - Software Development Environments
 - Software Security
 - Software Tools
 - Software Testing Techniques

c. Program and/or Project SAPs shall identify and tailor the training requirements to meet the needs of the Program or Project for implementing the Software Assurance activity.

d. Appropriate records of training shall be maintained in the System for Administration, Training and Education Resources for NASA (SATUREN).
APPENDIX A – ABBREVIATIONS AND ACRONYMS

AOA Annual Operating Agreement
CFR Code of Federal Regulations
CIO Chief Information Officer
COTS Commercial-off-the-Shelf software
DDMS Design and Data Management System
GOTS Government-off-the-Shelf software
HA Hazard Analysis
IPEP IV&V Project Execution Plan
IV&V Independent Verification & Validation
MOTS Modified-off-the-Shelf software
NASA National Aeronautics and Space Administration
NODIS NASA Online Directives Information System
NPD NASA Procedural Directive
NPR NASA Procedural Requirement
OCIO Office of the Chief Information Officer
PHA Preliminary Hazard Analysis
POC Point of Contact
RAC Risk Assessment Code
RRP Risk Review Panel
SA Software Assurance
SACR Software Assurance Classification Report
SAP Software Assurance Plan
SATERN System for Administration, Training and Education Resources for NASA
SBCC Stennis Board/Council/Committee Charter
SCWI Stennis Common Work Instruction
SHA System Hazard Analysis
SMA Safety and Mission Assurance Directorate
SMP Stennis Management Plan
SMS Stennis Space Center Management System
SOI Stennis Organizational Instructions
SPLN Stennis Plan
SPR Stennis Procedural Requirement
SS Software Safety
SSAP Software Safety and Assurance Plan
SSC (John C.) Stennis Space Center
SSP Software Safety Plan
STD Stennis Standard
STD Standard
TA Technical Authority
V&V Verification & Validation